Absolute Value Equation Solution Via Linear Programming
نویسنده
چکیده
By utilizing a dual complementarity property, we propose a new linear programming method for solving the NP-hard absolute value equation (AVE): Ax−|x| = b, where A is an n×n square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving a few linear programs, typically less than four. The algorithm was tested on 500 consecutively generated random solvable instances of the AVE with n =10, 50, 100, 500 and 1,000. The algorithm solved 100% of the test problems to an accuracy of 10−8 by solving an average of 3.3 linear programs per AVE problem.
منابع مشابه
Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملAbsolute value equation solution via concave minimization
The NP-hard absolute value equation (AVE) Ax − |x| = b where A ∈ R and b ∈ Rn is solved by a succession of linear programs. The linear programs arise from a reformulation of the AVE as the minimization of a piecewise-linear concave function on a polyhedral set and solving the latter by successive linearization. A simple MATLAB implementation of the successive linearization algorithm solved 100 ...
متن کاملA Smoothing Technique for the Minimum Norm Solution of Absolute Value Equation
One of the issues that has been considered by the researchers in terms of theory and practice is the problem of finding minimum norm solution. In fact, in general, absolute value equation may have infinitely many solutions. In such cases, the best and most natural choice is the solution with the minimum norm. In this paper, the minimum norm-1 solution of absolute value equation is investigated. ...
متن کاملAbsolute value equation solution via dual complementarity
By utilizing a dual complementarity condition, we propose an iterative method for solving the NPhard absolute value equation (AVE): Ax−|x| = b, where A is an n×n square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving a succession of linear programs. The algorithm was tested on 500 consecutively generated random solvable instances of the AVE w...
متن کاملPrimal-dual bilinear programming solution of the absolute value equation
We propose a finitely terminating primal-dual bilinear programming algorithm for the solution of the NP-hard absolute value equation (AVE): Ax− |x| = b, where A is an n× n square matrix. The algorithm, which makes no assumptions on AVE other than solvability, consists of a finite number of linear programs terminating at a solution of the AVE or at a stationary point of the bilinear program. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Optimization Theory and Applications
دوره 161 شماره
صفحات -
تاریخ انتشار 2014